
cse138-notes

Andrew Zhu

Sep 01, 2022

CONTENTS:

1 Introduction 1
1.1 Failures . 1
1.2 Timeouts . 2
1.3 Why? . 2

2 Time 3
2.1 Logical Clocks . 4
2.2 Lamport Diagrams . 4
2.3 Network Models . 6
2.4 State and Events . 6
2.5 Partial Order . 7
2.6 Lamport Clocks . 8
2.7 Vector Clocks . 9

3 Protocol 13
3.1 FIFO Delivery . 14
3.2 Causal Delivery . 15
3.3 Totally Ordered Delivery . 17

4 Snapshots of Distributed Systems 19
4.1 Chandy-Lamport Algorithm . 20

5 Safety & Liveness 25
5.1 Fault Models . 26
5.2 Two Generals Problem . 27
5.3 Fault Tolerance . 28
5.4 Reliable Delivery, Take 2 . 28
5.5 Reliable Broadcast . 29

6 Replication 33
6.1 Primary-Backup Replication . 33
6.2 Chain Replication . 34
6.3 Total Order v. Determinism . 35
6.4 Bad Things . 36
6.5 Consistency . 38
6.6 Coordination . 38
6.7 Active v. Passive Replication . 39

7 Consensus 41
7.1 Properties . 41
7.2 Paxos . 42

i

7.3 Multi-Paxos . 48
7.4 Paxos: Fault Tolerance . 49
7.5 Other Consensus Protocols . 49

8 Consistency 51
8.1 Eventual Consistency . 51
8.2 Misc . 53
8.3 Quorum Consistency . 55

9 Dynamo 57
9.1 Concepts . 57
9.2 Disagreements . 57
9.3 Merkle Trees . 58
9.4 Tail Latency . 58
9.5 Sharding . 59
9.6 Consistent Hashing . 63

10 Heterogeneous Distributed Systems 67
10.1 First-Order Distributed Systems . 67
10.2 Heterogeneous . 68
10.3 Monolith . 68
10.4 Problems . 69
10.5 Iteration 2 . 70
10.6 Business . 71
10.7 Ideals + Rules of Thumb . 71
10.8 Conclusion . 72

11 MapReduce 73
11.1 Online v. Offline Systems . 73
11.2 MapReduce . 74
11.3 Word Count . 76
11.4 What Could Go Wrong . 77
11.5 MapReduce @ Google . 77

12 Math 79
12.1 The Cost of Consensus . 79
12.2 Strong Convergence . 79
12.3 Upper Bounds . 80
12.4 Examples . 80

13 Acknowledgement 83

14 Indices and tables 85

Index 87

ii

CHAPTER

ONE

INTRODUCTION

> What is a distributed system?

distributed system

A system running on several nodes connected by a network, characterized by partial failure.

1.1 Failures

There are two philosophies when dealing with failure:

• High-Performance Computing (HPC) philosophy
– treat partial failure as total failure

– checkpointing

• “cloud computing” philosophy
– treat partial failure as expected

– work around the failure

– “everything fails, all the time”

Consider a simple system of two machines, M1 and M2. Suppose M1 asks M2 for the value of some variable x.

M1 -- x? --> M2
<-- 5 ---

Some potential failures are:

• request from M1 is lost

• request from M1 is slow

• M2 crashes

• M2 is slow to respond

• response from M2 is slow or lost

• Byzantine faults - corrupt transmission/malicious response/etc

Important: If you send a request to another node and don’t receive a response, it is impossible to know why.

1

cse138-notes

1.2 Timeouts

Real systems try to cope with this using timeouts: after a certain amount of time, assume failure and try again. However,
this isn’t a perfect system - for example, consider if M1 told M2 to increment x:

M1 -- x++ --> M2 (x=5)
x++

M1 X<-- 6 -- x=6

If we knew the max delay d and processing time r, we could set the timeout to 2𝑑+ 𝑟 and rule out a lot of uncertainty.
However, you can’t get an accurate value for d and r in real life usually, just statistics. Therefore, distributed systems
have to account for both partial failure and unbounded latency.

1.3 Why?

So why do we make systems distributed and deal with all of this?

• make things faster

• more data than can fit on one machine

• reliability (more copies of data)

• throughput (data is physically closer)

2 Chapter 1. Introduction

CHAPTER

TWO

TIME

What do we use clocks for?

• “scheduling”: marking points in time
– “this class starts at 3:20pm PDT”

– “this item in cache expires on May 21 at 8pm”

– “this error message in errors.txt has a timestamp of X”

• durations/intervals
– this class is 95 minutes long

– this request times out in 10 seconds

Computers have 2 kinds of physical clocks:

• time of day clock
– tells you what time of day it is

– can be synchronized between machines (e.g. NTP)

– can jump forward/backward (e.g. moving between time zones, DST, leap seconds)

– not so great for intervals/durations

– ok for points in time, but only ok

• monotonic clock
– only goes forward

– not comparable between machines (e.g. time since boot)

– cannot mark specific points in time

Consider the following scenario, where two computers take snapshots of their state at a given time:

3

cse138-notes

2.1 Logical Clocks

Logical clocks only measure the order of events.

e.g. A -> B: “A happened before B”

This tells us some things about causality:

• A might have caused B

• B could not have caused A

2.2 Lamport Diagrams

aka spacetime diagrams

Each process is represented by a line. It has a discrete beginning and goes on forever.

Events are represented by dots on the line.

You can represent systems of machines and messages with lines and arrows:

4 Chapter 2. Time

cse138-notes

Given events A and B, we say 𝐴 → 𝐵 if:

• A and B occur on the same process with A before B

• A is a send event and B is the corresponding receive event

• 𝐴 → 𝐶 and 𝐶 → 𝐵

If we can’t be sure that given a pair of events, one happens before the other, they are concurrent:

𝑅||𝑇

We can use logical clocks to counteract causal anomalies like this, caused by unbounded latency:

2.2. Lamport Diagrams 5

cse138-notes

2.3 Network Models

synchronous network

a network where there exists an n such that no message takes longer than n units of time to be delivered.

We won’t talk about this type of network.

asynchronous network

a network with unbounded latency, i.e. there does not exist such n such that no message takes longer than n units
of time to be delivered.

2.4 State and Events

state

something that a given machine knows - e.g. contents of memory/disk

represented by a dot on a Lamport diagram

We can determine the current state by looking at the sequence of events leading up to it:

6 Chapter 2. Time

cse138-notes

However, we can’t do the opposite.

2.5 Partial Order

Let’s take a brief detour to talk about partial orders.

Partial orders are:

• a set S

• a binary relation, often written , that lets you compare elements of S, and has the following properties:
– reflexive: ∀𝑎 ∈ 𝑆, 𝑎 ≤ 𝑎

– antisymmetry: ∀𝑎, 𝑏 ∈ 𝑆, 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑎 =⇒ 𝑎 = 𝑏

– transitivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ≤ 𝑏 ∧ 𝑏 ≤ 𝑐 =⇒ 𝑎 ≤ 𝑐

The “happens-before” relation is not a partial order! Considering a set of events, transivity holds and antisymmetry
holds (vacuously), but events are not reflexive (it is, however, an irreflexive partial order)!

Note: An actual partial order is set containment:

2.5. Partial Order 7

cse138-notes

Note that in a partial order, some elements of S may not be comparable (in the example above, {A} and {B} are not
related). If all elements in S are comparable, it’s called a total order (e.g. natural numbers).

2.6 Lamport Clocks

a type of logical clock

𝐿𝐶(𝐴) - the Lamport clock of event A.

clock condition

if 𝐴 → 𝐵, then 𝐿𝐶(𝐴) < 𝐿𝐶(𝐵).

How do we assign Lamport clocks to events?

1. every process keeps a counter initialized to 0

2. on every event on a process, increment process’ counter by 1

3. when you send a message, include the current counter with the message

4. when you receive a message, set counter to max(local, recv) + 1

Important: The converse is not necessarily true (i.e. 𝐿𝐶(𝐴) < 𝐿𝐶(𝐵)¬ =⇒ 𝐴 → 𝐵).

8 Chapter 2. Time

cse138-notes

Even though 𝐿𝐶(𝐴) < 𝐿𝐶(𝐵), there is no path from A to B - so there is no guarantee that 𝐴 → 𝐵.

Specifically, while Lamport clocks are consistent with causality, they do not characterize causaility.

We can use it for it’s contrapositive, though! (¬𝐿𝐶(𝐴) < 𝐿𝐶(𝐵) =⇒ ¬𝐴 → 𝐵 - either 𝐵 → 𝐴 or 𝐴||𝐵)

2.7 Vector Clocks

While Lamport clocks don’t character causaility, vector clocks do!

𝐴 → 𝐵 ⇐⇒ 𝑉 𝐶(𝐴) < 𝑉 𝐶(𝐵)

1. Every process keeps a vector of integers initialized to 0 (size = # of processes)

2. On every event (including receive), a process increments its own position in its vector

3. When sending a message, a process includes its current vector clock

4. When receiving a message, a process updates its vector clock to max(local, recv) (element-wise) and increments
its position

Note: max() is element-wise: e.g. max([1, 12, 4], [7, 0, 2]) = [7, 12, 4]

2.7. Vector Clocks 9

cse138-notes

Now, say we wanted to find all events that happened before some event A (its causal history):

Notice that all vector clocks of events in A’s causal history are less than or equal to A’s VC! (Similarly, all events that
happen after A have VCs greater than or equal to A’s VC.)

10 Chapter 2. Time

cse138-notes

Any events that do not satisfy either of these are concurrent with/causally independent of A. (In the example above,
some examples are [0, 3, 3] and [3, 3, 3]).

2.7. Vector Clocks 11

cse138-notes

12 Chapter 2. Time

CHAPTER

THREE

PROTOCOL

protocol

A set of rules that processes use to communicate with each other.

e.g. “At any point a machine can wake up and send ‘hi, how are you?’, and the receiver must reply with ‘good, thanks’.”

These are all Lamport diagrams of valid runs of the protocol - even though the third doesn’t have a response yet, we
may have just caught it before it has had a chance to reply.

There are in fact infinite diagrams representing a valid run of the protocol! We can also draw diagrams representing a
violation of the protocol:

The following are three different correctness properties of executions:

13

cse138-notes

3.1 FIFO Delivery

if a process sends message 𝑚2 after message 𝑚1, any process delivering both delivers 𝑚1 first.

Note:
• Sending a message is something you do

• Receiving a message is something that happens to you

• Delivering a message is something you can do with a message you receive (you can queue up receives and wait
to deliver them)

14 Chapter 3. Protocol

cse138-notes

Most systems programmers don’t have to worry about this often - it’s already part of TCP!

3.1.1 Sequence Numbers

This can be implemented using sequence numbers:

• messages are tagged with the sender ID, and sender sequence number

• senders increment their sequence number after sending

• if a received message’s sequence number is (previously received seq num) + 1, deliver it

However, this only works well if you also have reliable delivery - if not, and the receiver misses one, it will buffer all
future messages forever.

There are some solutions to this - like ignoring the missed message and delivering all buffered ones - but if the missed
one shows up later, it has to be dropped.

Also, just dropping every single message satisfies FIFO vacuously.

3.1.2 ACK

Another implementation is ACK - Alice waits for Bob to send an acknowledgement before sending the next message.

However, it’s a lot slower since it requires a full round trip per message.

3.2 Causal Delivery

If 𝑚1’s send happened before 𝑚2’s send, then 𝑚1’s delivery must happen before 𝑚2’s delivery.

The violation of FIFO delivery above is also a violation of causal delivery:

3.2. Causal Delivery 15

cse138-notes

Note that however, this diagram does not violate FIFO delivery, since FIFO delivery only accounts for messages sent
from a single process.

It is a violation of causal delivery, though.

3.2.1 Implementing Causal Broadcast

unicast

1 sender, 1 receiver (aka point-to-point)

multicast

1 sender, many receivers

broadcast

1 sender, all processes in the system receive

For all of these above, no matter how many receivers there are, each send is considered one message.

First, we’ll examine the vector clocks algorithm with a twist: message receives don’t count as events.

• Every process keeps a VC, initially 0’s

• When a process sends a message, it increments its own position in the VC, and includes the updated VC with the
message

• When a process delivers a message, it updates its VC to the pointwise maximum of its local VC and the message’s

causal delivery

the property of executions that we care about today

causal broadcast

an algorithm that gives you causal delivery in a setting where all messages are broadcast messages

We want to define a deliverability condition that tells us whether or not a received message is os is not OK to deliver.
This deliverability condition will use the vector clock on the message.

16 Chapter 3. Protocol

cse138-notes

deliverability

a message m is deliverable at a process p if:

• 𝑉 𝐶(𝑚)[𝑘] = 𝑉 𝐶(𝑝)[𝑘] + 1, where k is the sender’s position

• 𝑉 𝐶(𝑚)[𝑘] ≤ 𝑉 𝐶(𝑝)[𝑘], for every other k

If a message is not deliverable, add it to the delivery queue, and check for deliverability each time you receive a new
message (update your VC).

3.3 Totally Ordered Delivery

If a process delivers 𝑚1 then 𝑚2, then all processes delivering both 𝑚1 and 𝑚2 deliver 𝑚1 first.

The image below is a violation, since P2 delivers 1 then 2, but P3 delivers 2 then 1.

3.3. Totally Ordered Delivery 17

cse138-notes

18 Chapter 3. Protocol

CHAPTER

FOUR

SNAPSHOTS OF DISTRIBUTED SYSTEMS

Processes have individual state, which is pretty much all the events that have happened up to a given point.

How do we get the state of an entire distributed system (a “global snapshot”) at a given time?

We can’t use time-of-day clocks, since they aren’t guaranteed to be synchronized across all processes.

consistent

Property that we want: If we have events A and B where 𝐴 → 𝐵, and B is in the snapshot, then A is also in the
snapshot.

19

cse138-notes

4.1 Chandy-Lamport Algorithm

channel

connection from one process to another, with FIFO ordering (e.g. 𝐶12: the channel from 𝑃1 to 𝑃2)

𝑚2 is in 𝐶21, 𝐶21 = [𝑚2,𝑚3] (in-transit)

Note that a process graph must be strongly connected for C-L to work.

Some examples of snapshots:

How it works:

First, an initiator process (1 or more):

• records its own state

• sends a marker message out on all its outgoing channels

• starts recording the messages it receives on all its incoming channels

then, when process 𝑃𝑖 receives a marker message on 𝐶𝑘𝑖:

• if it is the first marker 𝑃𝑖 has seen (sent or received):

20 Chapter 4. Snapshots of Distributed Systems

cse138-notes

– it records its state

– marks channel 𝐶𝑘𝑖 as empty

– sends a marker out on all its outgoing channels

– starts recording on all incoming channels except 𝐶𝑘𝑖

• otherwise:
– it stops recording on channel 𝐶𝑘𝑖

^ this is a consistent snapshot!

^ Note that this cannot happen since channels are FIFO!

Note: Since each process sends a marker message to every other message, this algorithm sends 𝑛(𝑛− 1) messages in
total.

4.1. Chandy-Lamport Algorithm 21

cse138-notes

4.1.1 The Big Picture

in Chandy-Lamport Snapshots

The bad:

• channels are required to be FIFO, and messages sent down them can be represented as an ordered list (e.g.
𝐶12 = [𝑚1,𝑚2])

• because channels are FIFO, you never have to pause applications sending messages

• C-L snapshotting also assumes you have guaranteed delivery (messages are not lost, corrupted, or duplicated)

• it also assumes that processes don’t crash

The good:

• snapshots it takes are consistent, regardless of how long it takes to send the marker messages

• guaranteed to terminate (given assumptions above)

• works fine with more than one initiator! (decentralized - a centralized alg can only be initiated by one process)

Why?

• checkpointing

22 Chapter 4. Snapshots of Distributed Systems

cse138-notes

• deadlock detection

• detection of any stable property

4.1. Chandy-Lamport Algorithm 23

cse138-notes

24 Chapter 4. Snapshots of Distributed Systems

CHAPTER

FIVE

SAFETY & LIVENESS

Previously:

• FIFO delivery

• Causal delivery

• Totally ordered delivery

These are all safety properties: properties that say a “bad” thing won’t happen; on the other hand, a liveness property
says that a “good” thing will happen (e.g. eventual delivery).

Note: The word eventually is often an indicator of a liveness property.

Now, formally:

safety property

• say that a “bad” thing won’t happen

• can be violated in a finite execution (can point to where it went wrong)

liveness property

• says that a “good” thing will (eventually) happen

• cannot be violated in a finite execution (may take infinite time to satisfy)

It’s the combination of safety and liveness that makes systems useful - for example, otherwise, you could just drop
every message to satisfy FIFO.

In fact, every property is either a safety property, a liveness property, or both.

Let’s try and define reliable delivery:

(Take 1): Let 𝑃1 be a process that sends a message to process 𝑃2. If neither 𝑃1 not 𝑃2 crashes (and not all messages
are lost), then 𝑃2 eventually delivers m.

Well, it’s a start, but the whole “not crashing” thing is weak.

25

cse138-notes

5.1 Fault Models

A fault model tells you which kind of faults can occur. In the example system of two processes, one asking the other
for a value, we have the following faults:

• message from 𝑀1 is lost - omission fault

• message from 𝑀1 is slow - timing fault

• 𝑀2 crashed - crash fault

• 𝑀2 is slow - timing fault

• message from 𝑀2 is slow - timing fault

• message from 𝑀2 is lost - omission fault

• 𝑀2 lies - byzantine fault

crash fault

a process fails by halting (stops sending/receiving messages) and not everyone necessarily knows about it

(There is actually a subset, called “fail-stop faults”, where a process halts and everyone knows it halts)

omission fault

a message is lost (a process fails to send/receive a single message)

timing fault

a process responds too late (or too early)

Byzantine fault

a process behaves in an arbitrary or malicious way

Note: There’s a subset of Byzantine faults between omission and Byzantine called “authentication-detectable
Byzantine faults” - i.e. message corruptions that can be detected, and “downgraded” to an omission fault

If protocol X tolerates crash faults and protocol Y tolerates omission faults, does Y also tolerate crash faults?

Yes! Crash faults are just a special case of omission faults where all messages to/from a process are lost.

In fact, Byzantine faults are also a superset of crash (and omission) faults.

26 Chapter 5. Safety & Liveness

cse138-notes

Note: We left out timing faults in the above diagram, since we’re dealing only in async in this class.

fault model

A fault model is a specification that says what kind of faults a system can exhibit, and this tells you what kinds
of faults need to be tolerated.

In this class, we focus on the omission model (which includes the crash model).

5.2 Two Generals Problem

Tom Scott: https://www.youtube.com/watch?v=IP-rGJKSZ3s

In the omission model, it is impossible for Alice and Bob to attack and know for sure that the other will attack.

How do we mitigate?

5.2.1 Probabilistic Certainty

One option is to have Alice constantly send until she receives an ACK; then the longer Bob goes without receiving a
message, the more sure he is that she has received the ACK. Note that it’s not 100% guaranteed; every single message
since then could have failed, but it works.

5.2.2 Common Knowledge

There is common knowledge of p when everyone knows p, everyone knows that everyone knows p, everyone knows
that everyone knows that everyone knows p. . .

5.2. Two Generals Problem 27

cse138-notes

5.3 Fault Tolerance

What does it mean to tolerate a class of faults? Usually it’s defined by how/how much your program reacts to a fault.

A correct program satisfies both its safety and liveness properties, but often satisfying both is impossible during a fault.

So really, it’s about how wrong it goes in the presence of a fault.

live not live
safe masking fail-safe
not safe non-masking :(

5.4 Reliable Delivery, Take 2

Previously: Let 𝑃1 be a process that sends a message m to 𝑃2. If neither 𝑃1 nor 𝑃2 crashes (and not all messages are
lost), then 𝑃2 eventually delivers m.

Do we need not all messages are lost? Yes, if we’re working under the omission model.

So how do we implement it?

One implementation: repeat until ack

• Alice puts a message in the send buffer

• on timeout, send what’s in the buffer

• when ack received, delete message from buffer

One problem is if Bob’s ACK gets dropped, and he receives the message twice. This may or may not be an issue,
depending on the message. For example, if the message is something like “increase value by 1”, that’s an issue!

Note: Client A sending a set request, then client B, then a repeated send of client A is not actually an issue here - it’s
the same if client A’s initial message was delayed (one client will be sad).

28 Chapter 5. Safety & Liveness

cse138-notes

In this scenario, your messages should be idempotent - sending them multiple times should have the same effect as if
it was sent once.

So this is actually at-least-once delivery! But is exactly-once delivery possible?

Not really. . . most systems that claim exactly-once delivery in real life are one of the following:

• the messages were idempotent anyway

• they’re making an effort to deduplicate messages on the receiver

5.5 Reliable Broadcast

broadcast: one sender, everyone receives

Note: If you have a unicast primitive, you can implement broadcast by sending multiple unicasts in very quick
succession.

reliable broadcast

If a correct process delivers a broadcast message m, then all correct processes deliver m.

Note: A correct process is a process that is acting correctly in a given fault model (e.g. not crashed in crash
model).

Ex. If Alice sends a message to Bob and Carol in the crash model, Bob delivers it, but Carol crashes before she can,
reliable broadcast is not violated because Carol is not correct.

Ex. If Alice is sending a message to Bob and Carol in the crash model but crashes after Bob’s is sent but before Carol’s
is, reliable broadcast is violated, since Bob is a correct process that delivered the message, but Carol did not.

5.5. Reliable Broadcast 29

cse138-notes

If a process can crash in the middle of a broadcast, how do we get reliable broadcast?

If you receive a broadcast message, forward it to everyone else (or, at least, everyone but the sender) before delivering
it:

But if no one crashes, each process receives it twice:

But each process can keep track of messages they’ve already delivered/forwarded to not do it twice.

30 Chapter 5. Safety & Liveness

cse138-notes

Important: Fault tolerance often involves making copies!

5.5. Reliable Broadcast 31

cse138-notes

32 Chapter 5. Safety & Liveness

CHAPTER

SIX

REPLICATION

Why do we replicate state/data?

• fault tolerance: prevent data loss

• data locality (keep data close to clients that need it)

• dividing the work

But:

• higher cost

• hard to keep state consistent

Informally, a replicated storage system is strongly consistent when you cannot tell that the data is replicated.

6.1 Primary-Backup Replication

First, pick a process to be the primary. All other processes are then backups. In this scenario, clients can only connect
to the primary

When a client makes a write to the primary, the primary sends that write to all backups - when it then receives an ACK
from all backups, that is the commit point and it returns OK to the client.

On a read, the primary just returns the value to the client without consulting with any backups.

33

cse138-notes

Note: The client must ask the primary instead of a backup because there might be an uncommitted write in flight - a
backup might know it, but the primary might not have committed it yet.

How well does it match our replication criteria?

• [x] fault tolerance

• [] data locality

• [] dividing work

6.2 Chain Replication

Chain Replication for Supporting High Throughput and Availability - van Renesse, Schneider, 2004

Writes go to the head, which forwards to the next one in the chain, and so on to the tail. The tail ACKs the write.

Reads go to the tail.

Well, how well does it do?

• [x] fault tolerance

• [~] data locality

• [x] dividing work
– slightly better - reads and writes go to different processes

throughput

number of actions per unit of time

Depending on the workload, CR could give you better throughput than PB.

34 Chapter 6. Replication

cse138-notes

For CR, the optimal workload ratio is about 15% writes to 85% reads.

So what’s the downside of CR? Well, CR has a higher write latency (depending on # of nodes in chain). (the two have
about the same read latency)

latency

time between start and end of one action

Since PB broadcasts the write, it’s processed in parallel by the backups, and it can be ACKed as soon as all backups
ACK. For CR, the write message is forwarded, and has to be processed by each process in the chain in series.

Note: Regardless of which replication scheme you choose, the client and replicas have to agree on who’s the primary/
head/tail/etc, or else you lose the guarantees of replication!

6.3 Total Order v. Determinism

Messages sent by different clients at the same time can arrive at different times:

6.3. Total Order v. Determinism 35

cse138-notes

In the second example, there’s no violation of TO delivery, but the result is not the same depending on which client’s
message receives first!

determinism

On every run, the same outcome is achieved.

6.4 Bad Things

What happens if a client can tell that data is replicated (i.e. the replication is not strongly consistent)?

Read-Your-Writes Violation: A client’s written is not immediately returned on a subsequent read.

36 Chapter 6. Replication

cse138-notes

FIFO Consistency Violation

fifo consistency

Writes done by a single process are seen by all processes in the order they were issued

Causal Consistency Violation

causal consistency

Writes that are related by happens-before (i.e. potentially causally related) must be seen in the same causal order
by all processes

6.4. Bad Things 37

cse138-notes

6.5 Consistency

Actually, we can define different consistency models:
(aside: a model is the set of assumptions you keep in mind when building a system)

But maintaining stronger consistency requires more work, which means more latency and just being harder! Remember,
replication/consistency usually involves duplicating messages too, so more bandwidth too

6.6 Coordination

Going back to our strongly consistent replication protocols (PB/CR) - both of these need some kind of coordinator
process to know which process is the primary/head/tail/etc.

6.6.1 Chain Replication

CR uses the fail-stop fault model (i.e. crashes can occur and be detected by the environment), and requires that not all
processes crash. There are some ways to implement this (like heartbeating), but sometimes you’ll have a false positive.

• If the head process crashes, the coordinator makes the next process in line the new head

• If the tail process crashes, the coordinator makes the preceding process the new tail

• If a middle processes crashes, it just gets skipped over (although the clients do not have to be notified)

Additionally, when a failure happens, there has to be some handling of writes that are partway through the chain when
the failure happened - out of the scope of this class though (van Renesse & Schneider, 2004).

Important: What if the coordinator fails?!?!?! Do we have to replicate the coordinator?

(Next: Consensus)

38 Chapter 6. Replication

cse138-notes

6.7 Active v. Passive Replication

• Active replication: execute an operate on each replica (aka state machine replication)

• Passive replication: state gets sent to backups

Example (primary-backup replication):

You might choose one over the other for the following reasons:

• the updated state might be large (use active)

• an operation might be expensive to do on each replica (use passive)

• the operation might depend on local process state (use passive)

6.7. Active v. Passive Replication 39

cse138-notes

40 Chapter 6. Replication

CHAPTER

SEVEN

CONSENSUS

Consensus is hard.

When do you need it? When you have a bunch of processes, and. . .

• they need to deliver the same messages, in the same order (totally-ordered/atomic broadcast)
• they need to each know what other processes exist, and keep those lists up to date (group membership problem,

failure detection)

• one of them needs to play a particular specific role and the others need to agree who that is (leader election)

• they need to be able to take turns accessing a resource that only one can access at a time (mutual exclusion
problem)

• they’re participating in a transaction and need to agree on a commit/abort decision (distributed transaction
commit)

We can view consensus as a kind of box, with multiple inputs going in and coming out; the inputs might differ, but in
a correct system, they agree coming out.

7.1 Properties

Consensus algorithms try to satisfy the following properties:

• termination: each correct process eventually decides on a value (whatever it is)

• agreement: all correct processes decide on the same value

• validity (aka integrity, nontriviality): the agreed-upon value must be one of the proposed values

41

cse138-notes

Note: In the asynchronous network + crash fault model, no algorithm actually satisfies all 3 of these (Fischer, Lynch,
Paterson, 1983)! In this model, we have to compromise, and usually it’s termination that we compromise on.

7.2 Paxos

Leslie Lamport, 1998

Each process takes on some of 3 roles:

• proposer - proposes values

• acceptor - contribute to choosing from among the proposed values

• learner - learns the agreed-upon value

A process could take on multiple roles, but we usually examine the case where each process only takes on one. Each
process that plays any role is called a Paxos node.

Paxos nodes must:

• persist data

• know how many nodes is a majority of acceptors

7.2.1 How it Works

Phase 1
• proposer: sends a prepare message with a unique proposal number to a majority of acceptors,
Prepare(n)

– the proposal number n must be unique, and higher than any proposal number that this proposer has
used before

• acceptor: upon receiving a Prepare(n) message, check: “did I previously promise to ignore requests with this
proposal number?”

– if so, ignore the message

– otherwise, promise to ignore requests with proposal number < n, and reply with Promise(n) (*)
∗ Promise(n): “I will ignore any request with a proposal number < n”

∗ when a majority reply with a promise, we reach a milestone: it is impossible to get a majority to
promise anything lower than n

42 Chapter 7. Consensus

cse138-notes

Phase 2 - the proposer has received Promise(n) from a majority of acceptors (for some n)

• proposer: send an Accept(n, val) message to at least a majority of acceptors, where:
– n is the proposal number that was promised

– val is the actual value it wants to propose (**)

• acceptor: upon receiving an Accept(n, val)message, check if it previously promised to ignore requests
with n

– if so, ignore the message

– otherwise, reply with Accepted(n, val), and also sends Accepted(n, val) to all learners

∗ when the majority of acceptors have sent an Accepted(n, val) message for a given n, we
reach a milestone: we have consensus on val (but no one knows)

When each participant receives Accepted from a majority of acceptors, then they know consensus is reached (this
happens separately on the proposer and learners)

7.2. Paxos 43

cse138-notes

7.2.2 Getting Weird

Consider the following execution:

• P1 sends Prepare(5)

• P2 sends Prepare(4)
– it doesn’t receive ``Promise``s in time, so it tries again with a higher proposal number

• P1 sends Accept(5, foo) and the acceptors send Accepted(5, foo) at the same time P2 sends Prepare(6)

• oh no!

So we have to change what happens in phase 1:

44 Chapter 7. Consensus

cse138-notes

• acceptor: upon receiving a Prepare(n) message, check: “did I previously promise to ignore requests with this
proposal number?”

– if so, ignore the message

– otherwise, check if it has previously accepted anything
∗ if so, reply with Promise(n, (n_prev, val_prev)), where n_prev is the highest previously-

accepted proposal number and val_prev is the previously accepted proposed value

∗ otherwise, reply with Promise(n)

Now, in phase 2, the proposer has to do something different having received Promise(n) or Promise(n, (n_prev,
val_prev)) from a majority of acceptors:

• proposer: send an Accept(n, val) message to at least a majority of acceptors, where:
– n is the proposal number that was promised

– val is chosen as follows:
∗ the val_prev corresponding to the highest n_prev

∗ or the value it wants, if no n_prev info was received

7.2. Paxos 45

cse138-notes

7.2.3 Final Algorithm

Phase 1
• proposer: sends a prepare message with a unique proposal number to a majority of acceptors,
Prepare(n)

– the proposal number n must be unique, and higher than any proposal number that this proposer has
used before

• acceptor: upon receiving a Prepare(n) message, check: “did I previously promise to ignore requests with this
proposal number?”

– if so, ignore the message

– otherwise, check if it has previously accepted anything
∗ if so, reply with Promise(n, (n_prev, val_prev)), where n_prev is the highest previously-

accepted proposal number and val_prev is the previously accepted proposed value

∗ otherwise, reply with Promise(n)

Phase 2 - the proposer has received Promise(n) or Promise(n, (n_prev, val_prev)) from a majority of accep-
tors (for some n)

• proposer: send an Accept(n, val) message to at least a majority of acceptors, where:
– n is the proposal number that was promised

– val is chosen as follows:
∗ the val_prev corresponding to the highest n_prev

∗ or the value it wants, if no n_prev info was received

46 Chapter 7. Consensus

cse138-notes

• acceptor: upon receiving an Accept(n, val)message, check if it previously promised to ignore requests
with n

– if so, ignore the message

– otherwise, reply with Accepted(n, val), and also sends Accepted(n, val) to all learners

∗ when the majority of acceptors have sent an Accepted(n, val) message for a given n, we
reach a milestone: we have consensus on val (but no one knows)

Paxos satisfies agreement and validity! What might cause it not to terminate. . . ?

7.2.4 Non-Termination

Paxos can fail to terminate if you have duelling proposers:

In the above execution, a proposer never receives a majority Accepted because the other proposer butts in.

So why don’t we just always only have one proposer? Theoretically we could just have one process declare itself the
leader and tell the others what the accepted value it is. . . but picking the leader requires consensus in itself!

We could, however, choose a different leader election protocol to choose the proposer for a paxos run; and that leader
election protocol could have different guarantees (e.g. termination and validity, instead of agreement/validity)

7.2. Paxos 47

cse138-notes

7.3 Multi-Paxos

Paxos is good for gaining consensus on a single value - for multiple (e.g. a sequence of values), you have to rerun the
whole thing. What if you want to decide on a sequence of values?

For example, if you wanted to implement TO delivery (e.g. in a system where 2 messages are sent), you need to agree
on two values: what message is sent first, and which is second. In normal Paxos, this takes a lot of messages!

What if we (well, the accepted proposer) just kept sending Acceptmessages with the same proposal number (i.e. kept
repeating phase 2)? Turns out, you can keep doing this until your messages start getting ignored (i.e. a higher Prepare
is received)!

And if a second process butts in, Multi-Paxos pretty much just becomes normal Paxos.

Note: An alternative way to agree on a sequence is batching - queuing up multiple values and using normal Paxos to
get consensus on a batch at a time.

48 Chapter 7. Consensus

cse138-notes

7.4 Paxos: Fault Tolerance

We can’t have just one acceptor, since it can crash.

7.4.1 Acceptors

If we have 3 acceptors, only one can crash and Paxos will still work - you need to hear from both live acceptors.

If you have 5, you can accept 2 crashes. In general, a minority of acceptors can crash.

If f is the number of acceptor crashes you want to tolerate, you need 2𝑓 + 1 acceptors.

7.4.2 Proposers

If f is the number of proposer crashes you want to tolerate, you need 𝑓 + 1 proposers.

7.4.3 Omission Faults

Paxos is tolerant to omission faults (given timeouts) - it might not terminate, but that’s already not a guarantee, so eh.
In this scenario, it’s safe but not live - fail-safe.

7.5 Other Consensus Protocols

• Raft (Diego Ongaro, John Ousterhout, 2014)
– designed to be easier to understand than other protocols

• Zab (Zookeeper Atomic Broadcast; Yahoo Research, late 2000s)

• Viewstamped Replication (Brian Oki, Barbara Liskov, 1998)

All of these are for a sequence of values, like Multi-Paxos.

7.4. Paxos: Fault Tolerance 49

cse138-notes

50 Chapter 7. Consensus

CHAPTER

EIGHT

CONSISTENCY

See also: Replication

Recall: strong consistency is when a client can’t tell that data is replicated.

Strong consistency ultimately relies on consensus, if you also want fault tolerance. For example, we can’t enforce TO
delivery using just vector clocks, but what if we could make it so that the order they arrived in didn’t matter?

One example of a case where order doesn’t matter is two clients trying to modify different keys:

This isn’t strong consistency, though - a client could see the replication in the time between the two requests landing
on each replica.

8.1 Eventual Consistency

eventual consistency

Replicas eventually agree, if clients stop submitting updates.

Eventual consistency is a liveness property, but usually consistency guarantees are safety properties - it’s hard to con-
sider in the same hierarchy as other guarantees. We do have a related safety property, though:

strong convergence

Replicas that have delivered the same set of updates have equivalent state.

This execution fails strong convergence:

51

cse138-notes

But this execution satisfies it:

Often, these two properties are combined into strong eventual consistency, which is both a safety and liveness property.

8.1.1 Concurrency

Strong convergence is easy if different clients write to different keys. . . what if we wanted different clients write to the
same key?

Let’s make our replicas save all concurrent updates in a set! But what does the client do?

Generally, it’s up to the client (application-specific conflict resolution). In some cases, the client can be smart! For
example, if your state is something like a shopping cart, you can merge the sets!

52 Chapter 8. Consistency

cse138-notes

We’ll see more like this in the Dynamo paper.

8.2 Misc

Terminology used in the Dynamo paper.

network partition

A network partition is a failure state where some part of a network cannot communicate with another part of the
network:

availability

perfect availability: “every request receives a response” - a liveness property

(usually there’s some more to this, like “within X time” or “99th percentile”, but this is a fine start)

Consider the following: what if you have a network partition that prevents the primary from communicating with
backups - when should the primary ACK the client?

8.2. Misc 53

cse138-notes

• We could wait for the partition to heal before ACKing, but then the client could be left waiting a long time. This
gives you consistency, but less availability.

• We could ACK immediately and do the replication when the partition eventually heals, but then the system is
inconsistent for some time. This gives you availability, but at the cost of consistency.

Primary-Backup/CR prioritizes consistency over availability; Dynamo et al. choose availability.

If the client can talk to replicas on both sides of the partitions, though, this is bad - the first replica should probably
choose not to ACK the write at all!

This tradeoff is called CAP:

CAP

• Consistency

• Availability

• Partition tolerance

It’s impossible to have perfect consistency and availability, because of network partitions.

Note: If you happen to be reading these notes front-to-back, you should go take a look at Dynamo now.

54 Chapter 8. Consistency

cse138-notes

8.3 Quorum Consistency

How many replicas should a client talk to? Quorum systems let you configure this.

• N: number of replicas

• W: “write quorum” - how many replicas have to acknowledge a write operation to be considered complete

• R: “read quorum” - how many replicas have to have to acknowledge (i.e. respond to) a read operation

Obviously, W <= N and R <= N.

Consider N = 3, W = 3, R = 1 (Read-One-Write-All: ROWA). This doesn’t necessarilygive you strong consistency
because replicas might deliver writes from different clients in different orders. There’s other problems too, like a
network partition or a failed replica blocking all writes! (Also, it’s just slow to write.)

The Dynamo paper suggests, for N = 3, R = 2 and W = 2. This is so read and write quorums overlap:

In general, if R + W > N, read quorums will intersect with write quorums.

Some database systems (e.g. Cassandra) let you configure these constants. For example, if you wanted super fast writes
but less guarantee on consistency, you might set W = 1.

8.3. Quorum Consistency 55

cse138-notes

56 Chapter 8. Consistency

CHAPTER

NINE

DYNAMO

This section of notes discusses concepts found in the Dynamo paper, at http://composition.al/CSE138-2021-03/
readings/dynamo.pdf.

9.1 Concepts

• availability
– “every request will receive a response” (quickly? 99.9% of requests?)

• network partitions
– some machine(s) can’t talk to other(s)

– temporary and unintentional

• eventual consistency
– a liveness property

– “replicas eventually agree if updates stop arriving”

– Doug Terry, Bayou, 1995

• application-specific conflict resolution
– the client can resolve conflicting states (e.g. merging shopping carts)

– dynamo: deleted items can reappear in a cart (bug)

– dynamo: if client has no specific conflict resolution, last write wins (LWW)

Consider the problem of adding items to a shopping cart: writes commute, which implies strong convergence (replicas
that deliver the same set of requests have the same state).

9.2 Disagreements

Dealing with replicas that disagree: the first step is to find out that some replicas disagree.

Dynamo has 2 concepts to deal with disagreements: anti-entropy and gossip.

anti-entropy

resolving conflicts in application state (a KVS)

57

http://composition.al/CSE138-2021-03/readings/dynamo.pdf
http://composition.al/CSE138-2021-03/readings/dynamo.pdf

cse138-notes

gossip

resolving conflicts in view state / group membership (what nodes are alive?)

Note: In general, anti-entropy and gossip are synonymous, but they have differing meanings in Dynamo.

9.3 Merkle Trees

In Dynamo, KVS states are large, but the view state is generally small. To compare KVS states without sending the
entire state, Dynamo uses Merkle trees (hash trees) - each leaf is a hash of a KVS pair, and each parent is a hash of its
children. Two replicas can then compare their root node - if it’s equal, all leaves must be equal; otherwise, compare the
direct children and so on.

9.4 Tail Latency

Recall: latency = time between the start and end of a single action

58 Chapter 9. Dynamo

cse138-notes

But the top one is worse than the bottom! Tail latency examines the latency of the worst requests (e.g. the 99.9th
percentile).

Dynamo has very good tail latency.

9.5 Sharding

What’s wrong with the approach where everyone stores all the data?

• what if you have more data than fits on one machine?

• if everyone stores all the data, consistency is more expensive to maintain

Let’s store different partitions of data on different machines instead!

9.5. Sharding 59

cse138-notes

But now you lose fault tolerance. . . so let’s replicate it some!

This is called data partitioning or sharding. Sharding gives you:

• increased capacity

• increased throughput

Note: Choice of replication is usually orthogonal to how you choose to shard your data; in the notes below, we focus

60 Chapter 9. Dynamo

cse138-notes

only on sharding and not replication.

Let’s consider a different sharding setup: where each machine acts as a primary for some part of the data, and the
backup for some other set of data!

Now you have more than one shard per node.

9.5.1 How to Shard

How do we choose how to split up our data among the shards?

What makes a sharding strategy good?

Consider the following strategies:

• randomly assigning data to nodes
– data is evenly distributed

– it’s hard to find where a specific piece of data is

• assign all data to one node
– easy to find where a specific piece of data is

– data is very unevenly distributed

• partition by key range

9.5. Sharding 61

cse138-notes

– easy to find where a specific piece of data is

– data can be unevenly distributed if keys are not evenly distributed

– we can make it more uniform by hashing the keys (and modulo num of shards)

key range partitioning

62 Chapter 9. Dynamo

cse138-notes

key hashing

But partitioning based on hash(key) % N causes problems. . . what if you add (or remove) a machine? Now everything
is off, and you have to rebalance the whole keyspace across the new nodes! It might not just be moving data to the new
machine - you have to move data between the old machines, too.

Drawback: too much data movement when N changes.

How do we move as little data as possible to achieve an even split? It turns out that the minimum movement possible
is 𝐾

𝑁 , where K is the number of keys and N is the number of machines.

We use a mechanism called consistent hashing to get this minimum movement!

9.6 Consistent Hashing

Think of the hash space as a ring, and each node has a position on the ring:

Now, we want to add a data point. We hash the key and it gives us a point on the ring - we then walk clockwise to find
the next server on the ring. The key lives on that server! Additionally, to do some replication, the key lives on the next
couple servers along the ring, too:

9.6. Consistent Hashing 63

cse138-notes

(in Dynamo it’s a little more complicated, each key has a preference list that is greater than the replication factor)

9.6.1 Adding Nodes

Now, when we add a new node, we only have to move the keys along the ring in the range between the previous node
and the new node (e.g. adding M5 below moves the keys between 48-60 to M5 from M1).

64 Chapter 9. Dynamo

cse138-notes

On average, you only have to move 𝐾
𝑁 pieces of data, and only 2 nodes (the added one and the one after it) are affected!

9.6.2 Crashing Nodes

What if a node crashes? For example, if M2 crashes, M3 becomes responsible for M2’s range, and M3 becomes
responsible for any keys that hash to 9-20 as well:

But other nodes are unaffected! And in Dynamo, since we replicate keys past a key’s home node, M3 just picks up all
the keys left homeless by M2’s death!

9.6.3 Oh No

What could possibly go wrong?

• cascading crashes: a machine doesn’t have the capacity to pick up the slack caused by another crashing and
crashes too

• the nodes aren’t actually evenly spaced
– dynamo fixes this by hashing to multiple places on the ring (“virtual nodes”), instead of just one

– virtual nodes also lets you add more load to machines with more capacity (give it more vnodes)

– but using virtual nodes creates a bunch of little places along the ring that get affected when a physical
node crashes (which may be a good or a bad thing - more nodes have to take action, but less chance of
cascading crash)

– you also have to be careful that not all your replication to other virtual nodes end up on the same
physical node

9.6. Consistent Hashing 65

cse138-notes

66 Chapter 9. Dynamo

CHAPTER

TEN

HETEROGENEOUS DISTRIBUTED SYSTEMS

guest lecture, Cyrus Hall

• Heterogeneous systems are the natural outcome of complex products

• Such products have diverse features, making composing them inherently difficult

• Products aimed at humans have more diverse concerns and different priorities

10.1 First-Order Distributed Systems

Classical distributed systems

• Multiple processes working toward some common goal

• Distributed, meaning, don’t share a memory space

• Have some notion of time (eg. vector clocks)

• Acceptance decisions (what to do with messages, are decisions accepted)

• Trouble scaling to WAN

more extreme distributed systems

• Often never actually consistent

• Local decisions are often greedy

• Example is BGP (border gateway protocol) routing in the internet

• there is a singular purpose to the collection of processes

• no common memory space

• all processes run the same algorithm (some may run different parts)

• ex. Paxos, Raft, Dynamo, BGP, TCP, bittorrent, etc

67

cse138-notes

10.2 Heterogeneous

Heterogeneous distributed systems are composed of more than one first-order system!

• Often made up of distributed and non-distributed systems

• behaviour determined by the behaviour of the involved 1st order components, and how they’re composed

• system composition is primarily a human task

• interaction between systems leads to complex failure modes

Systems are diverse, so it might be hard to compose them together:

• different purpose/goals

• frameworks: languages, APIs, protocols, service discovery framework, etc

• network location

• configuration

Differences in these properties lead to differences in behaviour. Failure, error states, “correctness”, etc are all expressed
differently!

10.3 Monolith

Lots of web services are monolithic - everything is all shoved into one service!

The service wants to provide multiple interfaces with different requirements (“multi-API syndrome”), though, for
example:

• frontend: on-line tasks, low latency required

• background aggregarion: off-line tasks, high latency is fine

• admin: who even knows lol

So why don’t we split those out into 3 different APIs?

68 Chapter 10. Heterogeneous Distributed Systems

cse138-notes

10.4 Problems

This still has problems, though:

In the backend:

• datastore is a single point of failure for all APIs

• variable request patterns: mix of latency sensitivities, spiky traffic patterns

• resource management is distributed
– each instance of each API is managing its request rate to the datastore

– maybe manage request load from each API in datastore layer?
∗ won’t scale as number of services grow

∗ an API later can still overwhelm the central datastore

In the frontend:

• load balancer is a single point of failure for all APIs

• more issues with variable request patterns
– users can deny off-line scripts from running

– more importantly, off-line scripts can deny users

• loadbalancer can ratelimit requests, but has fundamental limits (DDoS vuln)

• privacy and security concerns
– is the load balancer pure or does it cache and replay results?

– results for an offline system available to users?

TLDR: availability and resiliency are the main concerns

availability

The percentage of the time a system responds

resilience

The ability of a system to remain available (even in the face of spiky events)

Resiliency is the product of many factors, the key elements being:

• failure isolation

• redundancy and ease of scalability

• load management

Note: Availability may not mean a service is properly functioning in all respects - this has concerning implications
for failure detection!

10.4. Problems 69

cse138-notes

10.5 Iteration 2

Let’s iterate again:

We’re starting to see a recursive service pattern: as a product feature becomes important, the desire to isolate it grows.
Eventually new features and products are just built as a new service.

This iteration looks pretty good, but the real world is not so clean!

• engineering is happening during huge growth

• ops and downtime takes up a ton of engineers’ time

• product changes flying thick and fast, sales selling things that don’t exist

• etc

But this design brings with it a whole host of interesting new problems:

70 Chapter 10. Heterogeneous Distributed Systems

cse138-notes

Specifically, in addition to the SPOFs, cache consistency is really hard to keep in this model! Even just the different
instances of the frontend API might have different data in the cache :(

10.6 Business

Heterogeneous systems are, in part, the result of business decisions. As engineers, we need to make estimates of risk
and impact known; a healthy balance must be reached between eng, product, and business needs. Heterogeneous system
engineering is partly about finding a sense of zen.

10.7 Ideals + Rules of Thumb

• Accept failure

• Embrace error

• If possible, be stateless

• Isolate!!!!!!

Ideally, each system and service should:

• address a single concern

• loosely couple with other systems

• be easy to maintain (and test!)

• be independently and repeatedly deployable

• have clear documentation of its behaviour and semantics

Some rules of thumb:

• retries are dangerous (in heterogeneous systems)
– certain operations might not be idempotent (e.g. INCR)

– a web server that tries to charge a credit card to display an order to the frontend fails (might be ok to
retry IF the credit card processor guarantees that not only did it fail, it didn’t already charge)

10.6. Business 71

cse138-notes

• make stateless requests
– it’s hard not to retry if a transaction is completed in multiple requests or it’s not idempotent

– use idempotent requests whereever possible (e.g. SET vs INCR)

• propagate errors early
– if some downstream service gets an error, make the error the original requester’s problem

– lets us know the system is struggling

– often the original request is no longer important - user has moved on or never cared

– even better with active load control (e.g. queueing - is your dependency healthy?)

• retries can be a necessary evil
– but have backups!

• ratelimit traffic!
– each system has a max sustainable load peak

– you should ratelimit to X% of the peak sustainable rate (like, 95-98%)

– use a benchmarker to calculate this rate

10.8 Conclusion

• complex business processes and lifecycles lead to heterogeneous systems

• holding back the business is not the right tradeoff

• we can use isolation and loose coupling (and other) to mitigate complexity

• systems design is a social process

Contact: cyrusphall (at) gmail

72 Chapter 10. Heterogeneous Distributed Systems

CHAPTER

ELEVEN

MAPREDUCE

This section of notes discusses concepts found in the MapReduce paper, at http://composition.al/CSE138-2021-03/
readings/mapreduce.pdf

11.1 Online v. Offline Systems

online systems

AKA services - e.g. KVSes, web servers, databases, caches, etc.

These services wait for requests to arrive from clients, and then handle them quickly. Low latency and availability
are often prioritized.

offline systems

AKA batch processing systems - e.g. MapReduce

These services are focused around processing a lot of data, not necessarily for a client. High throughput is often
prioritized.

Note: There is a class of system somewhere between on- and offline systems, which have to process a lot of data
but also have to be responsive to the data as you get it - this class is pretty recent, and is casually called “streaming
systems”. They might be used in systems like Google Docs or Twitch.

How do you shard data that might be related? Partitioning by key, for example, might have one key that references
another in a different shard. (e.g. in SQL)

So why MapReduce? The same underlying data might need different representations (e.g. for a data analyst) that would
be really slow to generate online, but the clients don’t want all their requests to be slow. Instead, we can generate the
different representations offline and store a copy for our clients when they need it.

raw data

the authoritative version of the data - the format new data is stored in

derived data

the result of taking existing data (either raw or derived) and processing it somehow

One example of derived data is inverted indexes (e.g. word -> docs, where forward is doc -> words) - used in search
engines to support fast lookup by word.

We could create an inverted index from a forward index using something like this:

73

http://composition.al/CSE138-2021-03/readings/mapreduce.pdf
http://composition.al/CSE138-2021-03/readings/mapreduce.pdf

cse138-notes

step 1: map
>>> for doc in documents:
... for word in doc:
... yield (word, doc)

(the, Doc1)
(quick, Doc1)
...
(the, Doc2)
(dog, Doc2)

step 2: reduce
>>> ind = {}
>>> for word, doc in pairs:
... ind[word].append(doc)

{
the: [Doc1, Doc2],
quick: [Doc1],
dog: [Doc2]

}

Now, this algorithm isn’t particularly complicated on its own. But how do we run this at a large scale?

11.2 MapReduce

In MapReduce, many of the algs were conceptually simple - the hard part was running it on a huge amount of data in
a distributed fashion. What if our forward index is too large to fit on one machine? What if the inverted index is?

It turns out for this problem, we can easily parallelize by distributing docs to different machines! Each machine can
generate a set of intermediate key-value pairs from input key-value pairs and then save them locally without having
to do any computation - then reducer machines can grab some set of intermediate key-value pairs (e.g. grouped by
hash(key) % R) to solve them and save them to some file system (e.g. GFS).

74 Chapter 11. MapReduce

cse138-notes

Note that a lot of the work is done in the transfer of data between mappers and reducers, where reducers are reading
from multiple mappers - this communication pattern is called the shuffle and is expensive!

This MapReduce pattern is not specific to just this problem - you can use this same framework for a whole bunch of
tasks while writing very little code (the map and reduce functions)!

11.2. MapReduce 75

cse138-notes

Note: MapReduce has an open-source clone called Hadoop, and a GFS-equivalent called HDFS.

Other tasks that MapReduce can do include:

• inverted index

• grep (regex match)

• sort

• word count

• etc.

TLDR: MapReduce has 3 primary phases:

1. Map: generate a set of intermediate KV pairs from input KV pairs

2. Shuffle: intermediate KV pairs are sent to reduce workers according to some data partitioning scheme (e.g., but
not necessarily, hash(key))

3. Reduce: takes a key and all of its values (drawn from intermediate KV pairs) and generates some output values

11.3 Word Count

Another example: word count - this introduces the concept of a combiner function, where each mapper does a little bit
of the reducing so less data has to be shuffled (less bandwidth use). This is ok to do when an operation (e.g. addition)
is associative!

Note: An example of a non-associative operation might be some average function.

76 Chapter 11. MapReduce

cse138-notes

11.4 What Could Go Wrong

MapReduce uses hash(key) % R to assign reduce jobs to reduce workers, even though hash-mod has problems in
data replication - it’s fine here because you know the data amount that needs processing, so you can set R up front (it’s
an offline system).

This differs to an online system, which might need to scale replicas in response to traffic patterns.

If a worker crashes, each task (map, reduce on a subset of data) is deterministic, so a master node can just reassign the
task to a new worker. (They just redo the task since the intermediate result is stored locally instead of on, say, GFS -
less overhead that way.)

11.5 MapReduce @ Google

MapReduce has limited degrees of freedom - often, you’ll need to chain together multiple MR jobs to get the output
you want. This involves writing to a filesystem between each job - Google uses Flume, which allows MR chaining
without having to hit GFS each time.

11.4. What Could Go Wrong 77

cse138-notes

78 Chapter 11. MapReduce

CHAPTER

TWELVE

MATH

12.1 The Cost of Consensus

Consensus takes up a lot of messages.

This is because the consensus algorithms we study try to approach strong consistency, regardless of whatever the content
of the messages we’re sending is. But in many cases, we don’t need full strong consistency - just strong convergence.

12.2 Strong Convergence

strong convergence

Replicas that have delivered the same set of updates have equivalent state.

So what’s the math behind strong convergence? Recall partial orders:

partially ordered set (poset)

A set S, together with a binary relation ⊑ that relates elements of S to each other, where ⊑ has the following
properties:

1. reflexivity: ∀𝑎 ∈ 𝑆, 𝑎 ⊑ 𝑎

2. antisymmetry: ∀𝑎, 𝑏 ∈ 𝑆, 𝑎 ⊑ 𝑏 ∧ 𝑏 ⊑ 𝑎 =⇒ 𝑎 = 𝑏

3. transitivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆, 𝑎 ⊑ 𝑏, 𝑏 ⊑ 𝑐 =⇒ 𝑎 ⊑ 𝑐

An example of a poset is the set of all subsets of some other set, along with the subset relationship.

E.g. given the set {𝐴,𝐵,𝐶}, the poset 𝑆 = {{}, {𝐴}, {𝐵}, {𝐶}, {𝐴,𝐵}, {𝐵,𝐶}, {𝐴,𝐶}, {𝐴,𝐵,𝐶}}.

79

cse138-notes

12.3 Upper Bounds

Ex. How many elements of S are at least “as big as” (e.g. greater than by subset relation) both of {𝐴}, {𝐵}? There
are two: {𝐴,𝐵}, {𝐴,𝐵,𝐶}. These are called the upper bounds of {𝐴} and {𝐵}.

upper bound

Given a partially ordered set (𝑆,⊑), an upper bound of 𝑎, 𝑏 ∈ 𝑆 is an element 𝑢 ∈ 𝑆 such that 𝑎 ⊑ 𝑢 and 𝑏 ⊑ 𝑢.

A particular pair of elements may have many upper bounds, but the interesting one is usually the smallest one.

least upper bound

An upper bound u of 𝑎, 𝑏 ∈ 𝑆 is the least upper bound (aka lub, join) if 𝑢 ⊑ 𝑣 for each upper bound v of a and b.

Note: In our example above, every possible pair of elements has a least upper bound.

join-semilattice

A partially ordered set in which every two elements have a least upper bound is called a join-semilattice.

12.4 Examples

Consider a register which can take one of three states (𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑒𝑚𝑝𝑡𝑦), where 𝑒𝑚𝑝𝑡𝑦 ≤ 𝑡𝑟𝑢𝑒 and 𝑒𝑚𝑝𝑡𝑦 ≤ 𝑓𝑎𝑙𝑠𝑒.
If two clients set the register to different non-empty values simultaneously, there is no upper bound, so you’d have to
use some sort of consensus to resolve the conflict.

However, if the elements are members of a joined semilattice, there is a natural way to do conflict resolution.

Read more: Conflict-Free Replicated Data Types (the above is an example of a state-based CRDT).

80 Chapter 12. Math

cse138-notes

Another example may be if each client only communicates with one replica - it’s up to the replicas to share state and
resolve conflicts using lubs.

The states that replicas can take on are elements of a joined semilattice, whenever a conflict comes up, you can resolve
it by taking the least upper bound.

Note: This gets harder to handle when you have to deal with removing things from a set, not just adding them! One
solution is to track the set of all items that have been deleted (“tombstone sets”), but this takes space. . . !

12.4. Examples 81

cse138-notes

82 Chapter 12. Math

CHAPTER

THIRTEEN

ACKNOWLEDGEMENT

These notes are based on Lindsey Kuiper’s class on distributed systems (CSE 138) at UCSC. Lecture recordings can
be found here.

83

http://composition.al/CSE138-2021-03/course-overview.html
http://composition.al/CSE138-2021-03/schedule.html

cse138-notes

84 Chapter 13. Acknowledgement

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

85

cse138-notes

86 Chapter 14. Indices and tables

INDEX

A
availability (built-in variable), 53, 69

B
broadcast (built-in variable), 16

C
CAP (built-in variable), 54
channel (built-in variable), 20
consistent (built-in variable), 19

D
deliverability (built-in variable), 16
determinism (built-in variable), 36

G
gossip (built-in variable), 57

L
latency (built-in variable), 35

M
multicast (built-in variable), 16

P
protocol (built-in variable), 13

R
resilience (built-in variable), 69

S
state (built-in variable), 6

T
throughput (built-in variable), 34

U
unicast (built-in variable), 16

87

	Introduction
	Failures
	Timeouts
	Why?

	Time
	Logical Clocks
	Lamport Diagrams
	Network Models
	State and Events
	Partial Order
	Lamport Clocks
	Vector Clocks

	Protocol
	FIFO Delivery
	Sequence Numbers
	ACK

	Causal Delivery
	Implementing Causal Broadcast

	Totally Ordered Delivery

	Snapshots of Distributed Systems
	Chandy-Lamport Algorithm
	The Big Picture

	Safety & Liveness
	Fault Models
	Two Generals Problem
	Probabilistic Certainty
	Common Knowledge

	Fault Tolerance
	Reliable Delivery, Take 2
	Reliable Broadcast

	Replication
	Primary-Backup Replication
	Chain Replication
	Total Order v. Determinism
	Bad Things
	Consistency
	Coordination
	Chain Replication

	Active v. Passive Replication

	Consensus
	Properties
	Paxos
	How it Works
	Getting Weird
	Final Algorithm
	Non-Termination

	Multi-Paxos
	Paxos: Fault Tolerance
	Acceptors
	Proposers
	Omission Faults

	Other Consensus Protocols

	Consistency
	Eventual Consistency
	Concurrency

	Misc
	Quorum Consistency

	Dynamo
	Concepts
	Disagreements
	Merkle Trees
	Tail Latency
	Sharding
	How to Shard

	Consistent Hashing
	Adding Nodes
	Crashing Nodes
	Oh No

	Heterogeneous Distributed Systems
	First-Order Distributed Systems
	Heterogeneous
	Monolith
	Problems
	Iteration 2
	Business
	Ideals + Rules of Thumb
	Conclusion

	MapReduce
	Online v. Offline Systems
	MapReduce
	Word Count
	What Could Go Wrong
	MapReduce @ Google

	Math
	The Cost of Consensus
	Strong Convergence
	Upper Bounds
	Examples

	Acknowledgement
	Indices and tables
	Index

